IMPLEMENTING REPRODUCING KERNEL METHOD TO SOLVE SINGULARLY PERTURBED CONVECTION-DIFFUSION PARABOLIC PROBLEMS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiscale Convection in One Dimensional Singularly Perturbed Convection-Diffusion Problems

Linear singularly perturbed ordinary differential equations of convection diffusion type are considered. The convective coefficient varies in scale across the domain which results in interior layers appearing in areas where the convective coefficient decreases from a scale of order one to the scale of the diffusion coefficient. Appropriate parameter-uniform numerical methods are constructed. Nu...

متن کامل

High-order Time-accurate Schemes for Singularly Perturbed Parabolic Convection-diffusion Problems with Robin Boundary Conditions

The boundary-value problem for a singularly perturbed parabolic PDE with convection is considered on an interval in the case of the singularly perturbed Robin boundary condition; the highest space derivatives in the equation and in the boundary condition are multiplied by the perturbation parameter ε. In contrast to the Dirichlet boundary-value problem, for the problem under consideration the e...

متن کامل

Parameter-uniform finite difference schemes for singularly perturbed parabolic diffusion-convection-reaction problems

In this paper, parameter-uniform numerical methods for a class of singularly perturbed parabolic partial differential equations with two small parameters on a rectangular domain are studied. Parameter-explicit theoretical bounds on the derivatives of the solutions are derived. The solution is decomposed into a sum of regular and singular components. A numerical algorithm based on an upwind fini...

متن کامل

Numerical approximation of solution derivatives of singularly perturbed parabolic problems of convection-diffusion type

Numerical approximations to the solution of a linear singularly perturbed parabolic problem are generated using a backward Euler method in time and an upwinded finite difference operator in space on a piecewise-uniform Shishkin mesh for a convectiondiffusion problem. A proof is given to show first order convergence of these numerical approximations in appropriately weighted C-norm. Numerical re...

متن کامل

Nitsche-mortaring for singularly perturbed convection-diffusion problems

A finite element method for a singularly perturbed convection-diffusion problem with exponential boundary layers is analysed. Using a mortaring technique we combine an anisotropic triangulation of the layer region (into rectangles) with a shape regular one of the remainder of the domain. This results in a possibly non-matching (and hybrid), but layer adapted mesh of Shishkin type. We study the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Modelling and Analysis

سال: 2021

ISSN: 1392-6292,1648-3510

DOI: 10.3846/mma.2021.12057